

Locality-aware Attention Network with Discriminative Dynamics Learning For Weakly Supervised Anomaly Detection

Yujiang Pu¹, Xiaoyu Wu^{1*}

ICME 2022

¹State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China

Introduction

locating the start and end of the event at the frame level

Motivation

feature dynamics 0.4 0 .2 0.0 1500 2000 2500 500 1000 0 Frames score dynamics 0.0 0.0 500 1000 1500 2000 2500 0

Temporal Dynamics

• Feature Dynamics (FD)

Feature Difference between adjacent snippet

• Score Dynamics (SD)

Score Difference between adjacent snippet

Motivation

Motivation

Overall Structure of LA-Net with DDL method

Feature Extraction

 ϵ Untrimmed Video ${\cal V}$

$$\left. \begin{array}{l} \left. \begin{array}{l} \\ \end{array} \right. \end{array} \right\}$$
 Sliding Window $\chi = \{x_i\}_{i=1}^T$

$$\bigcup$$
 Snippet Feature $X = I3D(\chi) \in \mathbb{R}^{T \times D}$

Locality-aware Attention Network

Multiple Instance Learning

Discriminative Dynamics Learning

Score Dynamics Ranking --> Outer Bag

$$S = \{s_1, s_2, \dots, s_t\}$$

$$\delta_t^s = |s_t - s_{t+1}|$$

$$\varepsilon_{\Delta S} = \frac{1}{k} \sum_{t=1}^k |\delta_t^s|^2$$

$$\mathcal{L}_{DR} = max(0, \zeta - \mathcal{E}_{\Delta S}^a + \mathcal{E}_{\Delta S}^n)$$

Discriminative Dynamics Learning

Feature Dynamics Alignment --> **Inner Bag**

$$\begin{split} X^{F} &= \{x_{1}^{F}, x_{2}^{F}, \dots, x_{t}^{F}\} \\ \delta_{t}^{f} &= 1 - \frac{x_{t}^{F} x_{t+1}^{F}}{\|x_{t}^{F}\| \|x_{t+1}^{F}\|} \\ \delta_{t}^{s} &= |s_{t} - s_{t+1}| \end{split} \right\} \mathcal{L}_{DA} = \frac{1}{N \times (T-1)} \sum_{i=1}^{N} (\sum_{t=1}^{T-1} -\delta_{t}^{s} log(\delta_{t}^{f} + \epsilon))_{i} \\ \end{split}$$

Overall Objective Function

 $\mathcal{L} = \mathcal{L}_{MIL} + \lambda_1 \mathcal{L}_{DR} + \lambda_2 \mathcal{L}_{DA}$

Experimental Results

State-Of-The-Art Performance

 Table 1. Frame-level AUC performance on UCF-Crime.

Method	Feature	AUC(%)
Sultani et al. [9]	C3D RGB	75.41
Zhang et al. [10]	C3D RGB	78.66
Motion-Aware [21]	PWC Flow	79.00
Zhong et al. [11]	TSN RGB	82.12
Wu et al. [13]	I3D RGB	82.44
MS-BSAD [18]	I3D RGB	83.53
RTFM [20]	I3D RGB	84.30
DDL (Ours)	I3D RGB	85.12

 Table 2. Frame-level AP performance on XD-Violence.

Method	Feature	AP(%)
SVM baseline	-	50.78
OCSVM [22]	-	27.25
Hasan et al. [23]	-	30.77
Sultani et al. [9]	C3D RGB	73.20
Wu et al. [13]	I3D RGB	75.41
RTFM [20]	I3D RGB	77.81
DDL (Ours)	I3D RGB	80.72

Experimental Results

Ablation Study

Table 3. Ablation study of location prior.			
Model	UCF-Crime	XD-Violence	
	AUC(%)	AP(%)	
LA-Net w/o prior \mathcal{G}	83.06	78.41	
LA-Net w/ prior \mathcal{G}	83.67	79.18	

Table 4. Ablation study	y of the DDL method.
-------------------------	----------------------

\mathcal{L}_{MIL} \mathcal{L}_{DR}	\mathcal{L}_{DA}	UCF-Crime	XD-Violence	
		AUC(%)	AP(%)	
\checkmark			83.67	79.18
\checkmark	\checkmark		84.04	80.15
\checkmark		\checkmark	84.33	80.23
\checkmark	\checkmark	\checkmark	85.12	80.72

Qualitative Analysis

Thank You!